Inhibition of allergic late airway responses by inhaled heparin-derived oligosaccharides.

نویسندگان

  • T Ahmed
  • J Ungo
  • M Zhou
  • C Campo
چکیده

Inhaled heparin has been shown to inhibit allergic bronchoconstriction in sheep that develop only acute responses to antigen (acute responders) but was ineffective in sheep that develop both acute and late airway responses (LAR) (dual responders). Because the antiallergic activity of heparin is molecular-weight dependent, we hypothesized that heparin-derived oligosaccharides (<2, 500) with potential anti-inflammatory activity may attenuate the LAR in the dual-responder sheep. Specific lung resistance was measured in 24 dual-responder sheep before and serially for 8 h after challenge with Ascaris suum antigen for demonstration of early airway response (EAR) and LAR, without and after treatment with inhaled medium-, low-, and ultralow-molecular-weight (ULMW) heparins and "non-anticoagulant" fractions (NAF) of heparin. Airway responsiveness was estimated before and 24 h postantigen as the cumulative provocating dose of carbachol that increased specific lung resistance by 400%. Only ULMW heparins caused a dose-dependent inhibition of antigen-induced EAR and LAR and postantigen airway hyperresponsiveness (AHR), whereas low- and medium-molecular-weight heparins were ineffective. The effects of ULMW heparin and ULMW NAF-heparin were comparable and inhibited the LAR and AHR even when administered "after" the antigen challenge. The ULMW NAF-heparin failed to inhibit the bronchoconstrictor response to histamine, carbachol, and leukotriene D(4), excluding a direct effect on airway smooth muscle. In six sheep, segmental antigen challenge caused a marked increase in bronchoalveolar lavage histamine, which was not prevented by inhaled ULMW NAF-heparin. The results of this study in the dual-responder sheep demonstrate that 1) the antiallergic activity of inhaled "fractionated" heparins is molecular-weight dependent, 2) only ULMW heparins inhibit the antigen-induced EAR and LAR and postantigen AHR, and 3) the antiallergic activity is mediated by nonanticoagulant fractions and resides in the ULMW chains of <2,500.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of allergic airway responses by heparin derived oligosaccharides: identification of a tetrasaccharide sequence

BACKGROUND Previous studies showed that heparin's anti-allergic activity is molecular weight dependent and resides in oligosaccharide fractions of <2500 daltons. OBJECTIVE To investigate the structural sequence of heparin's anti-allergic domain, we used nitrous acid depolymerization of porcine heparin to prepare an oligosaccharide, and then fractionated it into disaccharide, tetrasaccharide, ...

متن کامل

Inhibition of allergic airway responses by inhaled low-molecular-weight heparins: molecular-weight dependence.

Inhaled heparin prevents antigen-induced bronchoconstriction and inhibits anti-immunoglobulin E-mediated mast cell degranulation. We hypothesized that the antiallergic action of heparin may be molecular weight dependent. Therefore, we studied the effects of three different low-molecular-weight fractions of heparin [medium-, low-, and ultralow-molecular-weight heparin (MMWH, LMWH, ULMWH, respect...

متن کامل

Molecular-weight-dependent effects of nonanticoagulant heparins on allergic airway responses.

We have hypothesized that antiallergic activity of inhaled heparin is molecular weight dependent and mediated by "nonanticoagulant fractions" (NAF-heparin). Therefore, we studied comparative effects of high-, medium-, and ultralow-molecular-weight (HMW, MMW, and ULMW, respectively) NAF-heparins on acute bronchoconstrictor response (ABR) and airway hyperresponsiveness (AHR) in allergic sheep. Sp...

متن کامل

Allergen-induced early and late asthmatic responses are not affected by inhibition of endogenous nitric oxide.

Endogenous exhaled nitric oxide (NO) is increased during the late response to inhaled allergen in patients with asthma and may be bronchoprotective in asthma or have a deleterious effect when generated in excess under inflammatory conditions. To investigate this, we evaluated the effect of inhibiting endogenous NO production with nebulized NG-nitro-L-arginine methyl ester (L-NAME), a nonselecti...

متن کامل

Arginase inhibition protects against allergen-induced airway obstruction, hyperresponsiveness, and inflammation.

RATIONALE In a guinea pig model of allergic asthma, using perfused tracheal preparations ex vivo, we demonstrated that L-arginine limitation due to increased arginase activity underlies a deficiency of bronchodilating nitric oxide (NO) and airway hyperresponsiveness (AHR) after the allergen-induced early and late asthmatic reaction. OBJECTIVES Using the same animal model, we investigated the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 88 5  شماره 

صفحات  -

تاریخ انتشار 2000